Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

E₃ - CORDIAL LABELING AND TOTAL 3 - SUM CORDIAL LABELING FOR THE EXTENDED DUPLICATE GRAPH OF ARROW GRAPH

¹R.Avudainayaki, ²B. Selvam

¹Department of Mathematics, Sri Sairam Institute of Technology, Chennai-600 044, India ²Department of Mathematics, S.I.V.E.T College, Gowrivakkam, Chennai-600 073, India

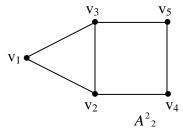
Abstract: In this paper, we prove that the extended duplicate graph of arrow graph admits total 3 sum cordial, E_3 -cordial and total E_3 - cordial labeling.

AMS subject classification: 05C78

Keywords: Duplicate graph, arrow graph E₃-cordial, total 3 sum cordial.

- **1. Introduction:** All graphs in this paper are finite, simple and undirected G(V,E), with |V|=p vertices and |E|=q edges. For all terminology and notations we follow Harary [4]. Most of the graph labeling techniques trace their origin to graceful labeling introduced independently by Rosa [6] and Golomb[7]. The concept of duplicate graph was introduced by E.Sampthkumar and he proved many results on it [2]. For an extensive survey on graph labeling and bibliographic references we refer to Gallian[3]. K.Thirusangu, B.Selvam and P.P. Ulaganathan have proved that the extended duplicate graph of twig graphs is cordial and total cordial [8]. In 2000, Cahit and Yilmaz[1] introduced the concept of E_3 Cordial labeling. V.K.Kaneria, M.M.Jariya and H.M.Makadia[9] discussed the idea of arrow graph. S.Pethanachi Selvam and G.Lathamaheswari[5] studied total 3-sum cordial labeling of some graph.
- **2. Preliminaries:** In this section, we give the basic definitions relevant to this paper. Let G(V,E) be a finite, simple and undirected graph with p vertices and q edges.

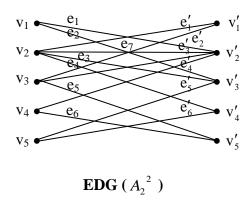
Definition 2.1 Arrow Graph: An arrow graph A_m^n with width 'n' and length 'm' is obtained by joining a vertex 'v' with superior vertices of $P_t \times P_m$ by 't' new edges from one end. Clearly it has 2m+1 vertices and 3m edges.


Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.


Illustration 1: ARROW GRAPH

Definition 2.2 Duplicate Graph: Let G (V,E) be a simple graph and the duplicate graph of G is DG (V₁, E₁) ,where the vertex set V₁ = V \cup V' and V \cap V' = ϕ and $f: V \to V'$ is bijective (for $v \in V$, we write f(v) = v' for convenience) and the edge set E₁ of DG is defined as the edge ab is in E if and only if both ab' and a'b are edges in E₁.

Definition2.3 Extended duplicate graph of Arrow graph: Let DG (V_1,E_1) be a duplicate graph of the arrow graph G(V,E). Extended duplicate graph of arrow graph is obtained by adding the edge v_2v_2' to the duplicate graph. It is denoted by EDG (A_m^2) . Clearly it has 4m+2 vertices and 6m+1 edges, where 'm' is the number of length.

Illustration 2: EXTENDED DUPLICATE ARROW GRAPH

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition2.4 Total 3 sum cordial labeling: Let f be a map from V(G) to $\{0, 1, 2\}$. For each edge uv, assign the label $(f(u) + f(v)) \pmod{3}$. The map f is called Total 3 sum cordial labeling of G, if $|f(i) - f(j)| \le 1$, $i \ne j$ and $i, j \in \{0,1,2\}$

Definition 2.5: E₃ **cordial labeling:** Let G be a graph with vertex et V and edge set E.An edge labeling $f: E \to Z_3$ where $Z_3 = \{0,1,2\}$ induces a vertex labeling $f^*: V \to Z_3$ defined by $f^*(v_i) = \left\{ \sum f(v_i v_j) \middle/ v_i v_j \in V \right\} \pmod{3}$ for all vertex $v \in V$. For $i \in Z_3$, let $m_i(f) = \left\{ e \in E \middle/ f(e) = i \right\}$ and $n_i(f) = \left\{ v \in V \middle/ f^*(v) = i \right\}$. If $\left| m_i(f) - m_j(f) \right| \le 1$ and $\left| n_i(f) - n_j(f) \right| \le 1$, $i \ne j \forall i, j \in Z_3$, it is called E₃-cordial labeling.

Definition 2.6: Total E₃ cordial labeling: An E₃-cordial labeling f is said to be total E₃-cordial labeling of G if for all $i, j \in Z_3$: $|\{m_i(f) + n_i(f)\} - \{m_j(f) + n_j(f)\}| \le 1$.

3. MAIN RESULTS:

3.1 TOTAL 3 SUM CORDIAL LABELING

In this section, we present an algorithm and prove the existence of total 3-sum cordial labeling for the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$.

Algorithm: 3.1

Procedure [Total 3 Sum Cordial labeling for EDG (A_m^2), $m \ge 2$]

$$V \leftarrow \{v_{1}, v_{2}, \dots, v_{2m}, v_{2m+1}, v'_{1}, v'_{2}, \dots, v'_{2m}, v'_{2m+1}\}$$

$$E \leftarrow \{e_{1}, e_{2}, \dots, e_{3m}, e_{3m+1}, e'_{1}, e'_{2}, \dots, e'_{3m}\}$$

$$v_{1} \leftarrow 1, v_{4} \leftarrow 1, v_{2} \leftarrow 2, v_{3} \leftarrow 0$$

$$v_{1}' \leftarrow 1, v_{2}' \leftarrow 2, v_{3}' \leftarrow 0$$

for
$$i = 0$$
 to $\left| \frac{m-2}{3} \right|$ do

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$v_{5+6i} \leftarrow 0$$
end for
$$for \ i = 0 \ to \ \left\lfloor \frac{m-3}{3} \right\rfloor do$$

$$v_{7+6i} \leftarrow 2$$

$$v_{6+6i} \leftarrow 0$$
end for
$$for \ i = 0 \ to \ \left\lfloor \frac{m-4}{3} \right\rfloor do$$

$$v_{9+6i} \leftarrow 1$$

end for

for
$$i = 0$$
 to $\left\lfloor \frac{m-5}{3} \right\rfloor$ do
$$v_{10+6i} \leftarrow 1$$
end for

 $v_{8+6i} \leftarrow 2$

for
$$i = 0$$
 to $\left\lfloor \frac{m-2}{3} \right\rfloor do$
for $j = 0$ to $1 do$
 $v'_{4+6i+j} \leftarrow 2$

end for

for
$$i=0$$
 to $\left\lfloor \frac{m-3}{3} \right\rfloor$ do

for $j=0$ to 1 do

 $v'_{6+6i+j} \leftarrow 1$

end for

end for

for
$$i = 0$$
 to $\left\lfloor \frac{m-4}{3} \right\rfloor$ do
for $j = 0$ to 1 do

$$v'_{8+6i+j} \leftarrow 0$$

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

end for

end for

end procedure

Theorem 3.1: The extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total 3 sum cordial.

Proof: Let A_m^2 , $m \ge 2$ be a arrow graph. In order to label the vertices, define a function $f: V \to \{0,1,2\}$ as given in algorithm 3.1.

The vertices v_1 , v_2 , v_3 , v_4 , v'_1 , v'_2 and v'_3 receive label '1', '2', '0', '1', '1','2' and '0' respectively;

for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the vertices v_{5+6i} receive label '0'; for $0 \le i \le \lfloor (m-3)/3 \rfloor$, the vertices v_{6+6i} receive label '0' and the vertices v_{7+6i} receive label '2';

for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the vertices v_{9+6i} receive label '1' and the vertices v_{8+6i} receive label '2'; for $0 \le i \le \lfloor (m-5)/3 \rfloor$, the vertices v_{10+6i} receive label '1'

for $0 \le i \le \lfloor (m-2)/3 \rfloor$ and $0 \le j \le 1$, the vertices v'_{4+6i+j} receive label '2'; for $0 \le i \le \lfloor (m-3)/3 \rfloor$ and $0 \le j \le 1$, the vertices v'_{6+6i+j} receive label '1'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$ and $0 \le j \le 1$, the vertices v'_{8+6i+j} receive label '0'.

Thus, the entire 4m+2 vertices are labeled.

To obtain the labels for edges , we define the induced function $f^*: E \to \{0,1,2\}$ such that $f^*(v_i, v_i) = \{f(v_i) + f(v_i)\} \pmod{3}$ where $v_i, v_i \in V$

The induced function yields the label '1' for the edges e_2 , e'_2 and e_{3m+1} ; the label '0' for the edges e_1 , e'_1 and e'_4 ; the label '2' for the edges e_3 , e_5 and e'_3 ;

for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the edges e_{6+9i} receive label '0'; the edges e_{4+9i} receive label '1'; the edges e_{5+9i} receive label '0'; the edges e_{6+9i} receive label '2';

for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the edges e_{10+9i} receive label '0'; the edges e'_{12+9i} receive label '1'; the edges e'_{11+9i} receive label '2'; the edges e'_{10+9i} receive label '0';

for $0 \le i \le \lfloor (m-4)/3 \rfloor$ and $0 \le j \le 1$, the edges $e_{11+9i+j}$ receive label '2';

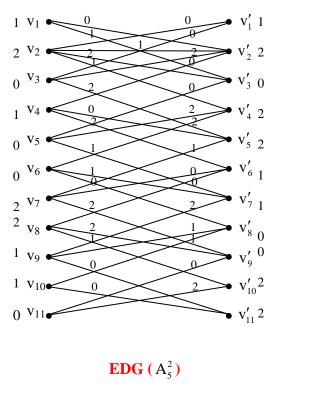
for $0 \le i \le \lfloor (m-3)/3 \rfloor$ and $0 \le j \le 1$, the edges e_{8+9i+j} receive label '1';

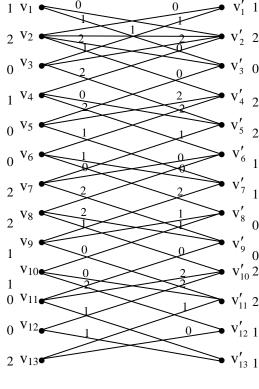
Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.


for $0 \le i \le \lfloor (m-5)/3 \rfloor$,the edges e_{14+9i} receive label '0'; the edges e'_{13+9i} receive label '1';


for $0 \le i \le [(m-3)/3]$, the edges e_{7+9i} receive label '2'; the edges e_{8+9i} receive label '1'; the edges e_{9+9i} receive label '0' and the edges e_{7+9i} receive label '2'.

Thus all the 6m+1 edges are labeled.

Hence the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total 3 sum cordial.

Illustration 3: Total 3 Sum Cordial labeling for the graphs **EDG** (A_5^2) and **EDG** (A_6^2)

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

3.2 E₃-CORDIAL LABELING

In this section, we present an algorithm and prove the existence of E_3 cordial labeling for the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$.

Algorithm: 3.2

Procedure [E_3 Cordial labeling for EDG (A_m^2), $m \ge 2$]

$$\begin{aligned} \mathbf{V} &\leftarrow \{\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{2m}, \mathbf{v}_{2m+1}, \mathbf{v'}_{1}, \mathbf{v'}_{2}, \dots, \mathbf{v'}_{2m}, \mathbf{v'}_{2m+1}\} \\ \mathbf{E} &\leftarrow \{\mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{3m}, \mathbf{e}_{3m+1}, \mathbf{e}'_{1}, \mathbf{e}'_{2}, \dots, \mathbf{e}'_{3m}\} \\ &\qquad \mathbf{e}_{2} &\leftarrow \mathbf{0}, \mathbf{e'}_{1} \leftarrow \mathbf{2}, \mathbf{e'}_{2} \leftarrow \mathbf{0}, \mathbf{e'}_{3} \leftarrow \mathbf{2} \\ & \textit{for } i = \mathbf{0} \textit{ to } \left\lfloor \frac{m-2}{3} \right\rfloor \end{aligned}$$

$$e_{5+9i} \leftarrow 2$$

$$e_{6+9i} \leftarrow 1$$

$$e_{1+9i} \leftarrow 1$$

$$e_{3+9i} \leftarrow 1$$

$$e_{A+9i} \leftarrow 0$$

end for

for
$$i = 0$$
 to $\left\lfloor \frac{m-3}{3} \right\rfloor$

$$e_{9+9i} \leftarrow 2$$

$$e_{7+9i} \leftarrow 1$$

$$e_{8+9i} \leftarrow 0$$

end for

for
$$i = 0$$
 to $\left\lfloor \frac{m-4}{3} \right\rfloor$

$$e_{11+9i} \leftarrow 0$$

end for

for
$$i = 0$$
 to $\left| \frac{m-2}{3} \right|$

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$e'_{6+9i} \leftarrow 2$$

$$end \ for$$

$$for \ i = 0 \ to \left\lfloor \frac{m-2}{3} \right\rfloor$$

$$for \ j = 0 \ to \ 1$$

$$e'_{4+9i+j} \leftarrow 1$$

$$end \ for$$

$$end \ for$$

$$for \ i = 0 \ to \left\lfloor \frac{m-3}{3} \right\rfloor$$

$$e'_{9+9i} \leftarrow 2$$

$$e'_{7+9i} \leftarrow 2$$

$$e'_{8+9i} \leftarrow 0$$

$$end \ for$$

$$for \ i = 0 \ to \left\lfloor \frac{m-4}{3} \right\rfloor$$

$$e'_{12+9i} \leftarrow 2$$

$$e'_{11+9i} \leftarrow 0$$

$$end \ for$$

$$for \ j = 0 \ to \ 1$$

$$e'_{10+9i+j} \leftarrow 1$$

$$end \ for$$

$$end \ for$$

end procedure

Theorem 3.2: The extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is E_3 coordial.

Proof: Let A_m^2 , $m \ge 2$ be a arrow graph. In order to label the edges, define a function

 $f: E \rightarrow \{0,1,2\}$ as given in algorithm 3.2

The edges e₂,e'₁,e'₂ and e'₃ receive label '0', '2', '0' and '2' respectively;

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the edges e_{5+9i} receive label '2'; the edges e_{6+9i} receive label '1'; the edges e_{3+9i} receive label '1'; the edges e_{3+9i} receive label '1'; the edges e_{4+9i} receive label '0'; the edges e_{6+9i} receive label '2';

for $0 \le i \le \lfloor (m-3)/3 \rfloor$, the edges e_{9+9i} receive label '2'; the edges e_{7+9i} receive label '1'; the edges e_{8+9i} receive label '0'; the edges e_{7+9i} receive label '2'; the edges e_{8+9i} receive label '0'; the edges e_{9+9i} receive label '2';

for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the edges e_{11+9i} receive label '0'; the edges e'_{11+9i} receive label '0'; for $0 \le i \le \lfloor (m-2)/3 \rfloor$ the edges e'_{12+9i} receive label '2';

for $0 \le i \le \lfloor (m-2)/3 \rfloor$ and $0 \le j \le 1$, the edges e'_{4+9i+j} receive label '0';

for $0 \le i \le |(m-4)/3|$ and $0 \le j \le 1$, the edges $e'_{10+9i+j}$ receive label '0'

Thus all the 6m+1 edges are labeled.

To obtain the labels for vertices, we define the induced function $f^*: V \to Z_3$ defined by $f^*(v_i) = \{\sum f(v_i, v_i)/v_i v_i \in E\} \pmod{3}$

The vertices v_1 , v_2 , v_3 , v'_1 , v'_2 and v'_3 receive label '1', '0', '1', '2', '1' and '2' respectively;

for $0 \le i \le |(m-2)/3|$ and $0 \le j \le 1$, the vertices v_{4+6i+1} receive label '0';

for $0 \le i \le |(m-3)/3|$ and $0 \le j \le 1$, the vertices v_{6+6i+j} receive label '2';

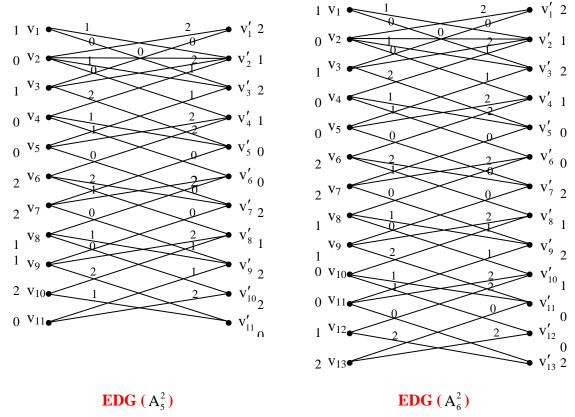
for $0 \le i \le |(m-4)/3|$ and $0 \le j \le 1$, the vertices v_{8+6i+j} receive label '1';

for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the vertices v'_{4+6i} receive label '1', the vertices v'_{5+6i} receive label '0':

for $0 \le i \le \lfloor (m-3)/3 \rfloor$, the vertices v'_{6+6i} receive label '0', the vertices v'_{7+6i} receive label '2';

for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the vertices v'_{8+6i} receive label '1', the vertices v'_{9+6i} receive label '0'. Thus all the entire 4m+2 vertices are labeled.

Hence the extended duplicate graph of arrow graph $\,A_m^2$, $\,m\geq 2\,$ is $E_3\,$ cordial.


Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Illustration 4: E₃ Cordial labeling for the graphs **EDG**(A_5^2) and **EDG**(A_6^2)

Theorem 3.3

The extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total E_3 cordial.

Proof:

In theorem 3.2,

Case (i) for $m = 3n - 4, n \ge 2$

 $m + \frac{m+1}{3}$ vertices were assigned the label "1", $m + \frac{m+1}{3}$ vertices were assigned the

label "0" and $m + \frac{m+1}{3} + 1$ vertices were assigned the label "2". 2m+1 edges were assigned the label "1", 2m edges were assigned the label "0" and 2m edges were assigned the label "2".

Case (ii) for $m = 3n - 3, n \ge 2$

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

 $m + \frac{m}{3} + 1$ vertices were assigned the label "1", $m + \frac{m}{3} + 1$ vertices were assigned the

label "0" and $m + \frac{m}{3}$ vertices were assigned the label "2". 2m edges were assigned the

label "1", 2m edges were assigned the label "0" and 2m+1 edges were assigned the label "2".

Case (iii) for $m = 3n - 2, n \ge 2$

 $m + \frac{m+2}{3}$ vertices were assigned the label "1", $m + \frac{m+2}{3}$ vertices were assigned the

label "0" and $m + \frac{m+2}{3}$ vertices were assigned the label "2". 2m edges were assigned

the label "1", 2m+1 edges were assigned the label "0" and 2m edges were assigned the label "2".

In case (i), the number of vertices and edges labeled "1" is $m + \frac{m+1}{3} + 2m + 1$

$$=\frac{10m+1}{3}+1$$
, the number of vertices and edges labeled "0" is $m+\frac{m+1}{3}+2m=\frac{10m+1}{3}$

and the number of vertices and edges labeled "1" is $m + \frac{m+1}{3} + 1 + 2m = \frac{10m+1}{3} + 1$, which differ by at most one.

In case (ii), the number of vertices and edges labeled "1" is

 $m + \frac{m}{3} + 1 + 2m = \frac{10m}{3} + 1$, the number of vertices and edges labeled "0" is $m + \frac{m}{3} + 1 + 1$

 $2m = \frac{10m}{3} + 1$ and the number of vertices and edges labeled "1" is $m + \frac{m}{3} + 2m + 1$

$$=\frac{10m}{3}+1$$
, which differ by at most one.

In case (iii), the number of vertices and edges labeled "1" is $m + \frac{m+2}{3} + 2m$

$$=\frac{10m+2}{3}$$
, the number of vertices and edges labeled "0" is $m+\frac{m+2}{3}+2m+1$

$$=\frac{10m+2}{3}+1$$
 and the number of vertices and edges labeled "1" is $m+\frac{m+2}{3}+2m$

Vol. 7Issue 8, August 2018

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

 $=\frac{10m+2}{3}$, which differ by at most one and satisfies the required condition. Hence the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total E_3 cordial labeling.

4. Conclusion

In this paper, we presented algorithms and proved that the extended duplicate graph of arrow graph A_m^2 , $m \geq 2$ admits total 3-sum cordial , E_3 - cordial and total E_3 - cordial labeling .

References

- 1. Cahit I and Yilmaz R., E₃ Cordial labeling, ArsCombinatoria, 54(2000), 119-127
- 2. E.Sampath kumar, "On duplicate graphs", Journal of the Indian Math. Soc. 37 (1973), 285 293.
- 3. Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of combinatories, 19, # DS6 (2015).
- 4. Harary, Graph Theory, Narosa puplising House-(2001).
- 5. Pethanachi Selvam.S and Lathamaheswari.G, Total 3-sum cordial labeling, IJMA-5(5),March 2014.
- 6. Rosa A, On certain Valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breech, N.Y. and Dunod paris, 1967.pp. 349- 355.
- 7. S.W,Golomb,How to number a graph. In: Graph theory and computing(R.C.Read.Ed.)Acadamic press.Newyork,(1972),23-37.
- 8. Thirusangu,K, Selvam B.and Ulaganathan P.P, Cordial labelings in extended duplicate twig graphs, International Journal of computer, mathematical sciences and applications, Vol.4, Nos 3-4, (2010), pp.319-328.
- 9. V.J.Kaneria, M.M.Jariya and H.M.Makadia, Gracefulness of arrow graphs and double arrow graphs ,Malaya Journal of Mat. 3(4) (2015) pp. 382-386.