Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A # E₃ - CORDIAL LABELING AND TOTAL 3 - SUM CORDIAL LABELING FOR THE EXTENDED DUPLICATE GRAPH OF ARROW GRAPH # ¹R.Avudainayaki, ²B. Selvam ¹Department of Mathematics, Sri Sairam Institute of Technology, Chennai-600 044, India ²Department of Mathematics, S.I.V.E.T College, Gowrivakkam, Chennai-600 073, India **Abstract:** In this paper, we prove that the extended duplicate graph of arrow graph admits total 3 sum cordial, E_3 -cordial and total E_3 - cordial labeling. **AMS subject classification:** 05C78 **Keywords:** Duplicate graph, arrow graph E₃-cordial, total 3 sum cordial. - **1. Introduction:** All graphs in this paper are finite, simple and undirected G(V,E), with |V|=p vertices and |E|=q edges. For all terminology and notations we follow Harary [4]. Most of the graph labeling techniques trace their origin to graceful labeling introduced independently by Rosa [6] and Golomb[7]. The concept of duplicate graph was introduced by E.Sampthkumar and he proved many results on it [2]. For an extensive survey on graph labeling and bibliographic references we refer to Gallian[3]. K.Thirusangu, B.Selvam and P.P. Ulaganathan have proved that the extended duplicate graph of twig graphs is cordial and total cordial [8]. In 2000, Cahit and Yilmaz[1] introduced the concept of E_3 Cordial labeling. V.K.Kaneria, M.M.Jariya and H.M.Makadia[9] discussed the idea of arrow graph. S.Pethanachi Selvam and G.Lathamaheswari[5] studied total 3-sum cordial labeling of some graph. - **2. Preliminaries:** In this section, we give the basic definitions relevant to this paper. Let G(V,E) be a finite, simple and undirected graph with p vertices and q edges. **Definition 2.1 Arrow Graph:** An arrow graph A_m^n with width 'n' and length 'm' is obtained by joining a vertex 'v' with superior vertices of $P_t \times P_m$ by 't' new edges from one end. Clearly it has 2m+1 vertices and 3m edges. Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. #### Illustration 1: ARROW GRAPH **Definition 2.2 Duplicate Graph:** Let G (V,E) be a simple graph and the duplicate graph of G is DG (V₁, E₁) ,where the vertex set V₁ = V \cup V' and V \cap V' = ϕ and $f: V \to V'$ is bijective (for $v \in V$, we write f(v) = v' for convenience) and the edge set E₁ of DG is defined as the edge ab is in E if and only if both ab' and a'b are edges in E₁. **Definition2.3 Extended duplicate graph of Arrow graph:** Let DG (V_1,E_1) be a duplicate graph of the arrow graph G(V,E). Extended duplicate graph of arrow graph is obtained by adding the edge v_2v_2' to the duplicate graph. It is denoted by EDG (A_m^2) . Clearly it has 4m+2 vertices and 6m+1 edges, where 'm' is the number of length. #### Illustration 2: EXTENDED DUPLICATE ARROW GRAPH Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A **Definition2.4 Total 3 sum cordial labeling:** Let f be a map from V(G) to $\{0, 1, 2\}$. For each edge uv, assign the label $(f(u) + f(v)) \pmod{3}$. The map f is called Total 3 sum cordial labeling of G, if $|f(i) - f(j)| \le 1$, $i \ne j$ and $i, j \in \{0,1,2\}$ **Definition 2.5:** E₃ **cordial labeling:** Let G be a graph with vertex et V and edge set E.An edge labeling $f: E \to Z_3$ where $Z_3 = \{0,1,2\}$ induces a vertex labeling $f^*: V \to Z_3$ defined by $f^*(v_i) = \left\{ \sum f(v_i v_j) \middle/ v_i v_j \in V \right\} \pmod{3}$ for all vertex $v \in V$. For $i \in Z_3$, let $m_i(f) = \left\{ e \in E \middle/ f(e) = i \right\}$ and $n_i(f) = \left\{ v \in V \middle/ f^*(v) = i \right\}$. If $\left| m_i(f) - m_j(f) \right| \le 1$ and $\left| n_i(f) - n_j(f) \right| \le 1$, $i \ne j \forall i, j \in Z_3$, it is called E₃-cordial labeling. **Definition 2.6: Total E₃ cordial labeling:** An E₃-cordial labeling f is said to be total E₃-cordial labeling of G if for all $i, j \in Z_3$: $|\{m_i(f) + n_i(f)\} - \{m_j(f) + n_j(f)\}| \le 1$. # 3. MAIN RESULTS: ## 3.1 TOTAL 3 SUM CORDIAL LABELING In this section, we present an algorithm and prove the existence of total 3-sum cordial labeling for the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$. #### Algorithm: 3.1 Procedure [Total 3 Sum Cordial labeling for EDG (A_m^2), $m \ge 2$] $$V \leftarrow \{v_{1}, v_{2}, \dots, v_{2m}, v_{2m+1}, v'_{1}, v'_{2}, \dots, v'_{2m}, v'_{2m+1}\}$$ $$E \leftarrow \{e_{1}, e_{2}, \dots, e_{3m}, e_{3m+1}, e'_{1}, e'_{2}, \dots, e'_{3m}\}$$ $$v_{1} \leftarrow 1, v_{4} \leftarrow 1, v_{2} \leftarrow 2, v_{3} \leftarrow 0$$ $$v_{1}' \leftarrow 1, v_{2}' \leftarrow 2, v_{3}' \leftarrow 0$$ for $$i = 0$$ to $\left| \frac{m-2}{3} \right|$ do Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A $$v_{5+6i} \leftarrow 0$$ end for $$for \ i = 0 \ to \ \left\lfloor \frac{m-3}{3} \right\rfloor do$$ $$v_{7+6i} \leftarrow 2$$ $$v_{6+6i} \leftarrow 0$$ end for $$for \ i = 0 \ to \ \left\lfloor \frac{m-4}{3} \right\rfloor do$$ $$v_{9+6i} \leftarrow 1$$ end for for $$i = 0$$ to $\left\lfloor \frac{m-5}{3} \right\rfloor$ do $$v_{10+6i} \leftarrow 1$$ end for $v_{8+6i} \leftarrow 2$ for $$i = 0$$ to $\left\lfloor \frac{m-2}{3} \right\rfloor do$ for $j = 0$ to $1 do$ $v'_{4+6i+j} \leftarrow 2$ end for for $$i=0$$ to $\left\lfloor \frac{m-3}{3} \right\rfloor$ do for $j=0$ to 1 do $v'_{6+6i+j} \leftarrow 1$ end for end for for $$i = 0$$ to $\left\lfloor \frac{m-4}{3} \right\rfloor$ do for $j = 0$ to 1 do $$v'_{8+6i+j} \leftarrow 0$$ Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A end for end for ## end procedure **Theorem 3.1:** The extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total 3 sum cordial. **Proof:** Let A_m^2 , $m \ge 2$ be a arrow graph. In order to label the vertices, define a function $f: V \to \{0,1,2\}$ as given in algorithm 3.1. The vertices v_1 , v_2 , v_3 , v_4 , v'_1 , v'_2 and v'_3 receive label '1', '2', '0', '1', '1','2' and '0' respectively; for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the vertices v_{5+6i} receive label '0'; for $0 \le i \le \lfloor (m-3)/3 \rfloor$, the vertices v_{6+6i} receive label '0' and the vertices v_{7+6i} receive label '2'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the vertices v_{9+6i} receive label '1' and the vertices v_{8+6i} receive label '2'; for $0 \le i \le \lfloor (m-5)/3 \rfloor$, the vertices v_{10+6i} receive label '1' for $0 \le i \le \lfloor (m-2)/3 \rfloor$ and $0 \le j \le 1$, the vertices v'_{4+6i+j} receive label '2'; for $0 \le i \le \lfloor (m-3)/3 \rfloor$ and $0 \le j \le 1$, the vertices v'_{6+6i+j} receive label '1'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$ and $0 \le j \le 1$, the vertices v'_{8+6i+j} receive label '0'. Thus, the entire 4m+2 vertices are labeled. To obtain the labels for edges , we define the induced function $f^*: E \to \{0,1,2\}$ such that $f^*(v_i, v_i) = \{f(v_i) + f(v_i)\} \pmod{3}$ where $v_i, v_i \in V$ The induced function yields the label '1' for the edges e_2 , e'_2 and e_{3m+1} ; the label '0' for the edges e_1 , e'_1 and e'_4 ; the label '2' for the edges e_3 , e_5 and e'_3 ; for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the edges e_{6+9i} receive label '0'; the edges e_{4+9i} receive label '1'; the edges e_{5+9i} receive label '0'; the edges e_{6+9i} receive label '2'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the edges e_{10+9i} receive label '0'; the edges e'_{12+9i} receive label '1'; the edges e'_{11+9i} receive label '2'; the edges e'_{10+9i} receive label '0'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$ and $0 \le j \le 1$, the edges $e_{11+9i+j}$ receive label '2'; for $0 \le i \le \lfloor (m-3)/3 \rfloor$ and $0 \le j \le 1$, the edges e_{8+9i+j} receive label '1'; Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. for $0 \le i \le \lfloor (m-5)/3 \rfloor$,the edges e_{14+9i} receive label '0'; the edges e'_{13+9i} receive label '1'; for $0 \le i \le [(m-3)/3]$, the edges e_{7+9i} receive label '2'; the edges e_{8+9i} receive label '1'; the edges e_{9+9i} receive label '0' and the edges e_{7+9i} receive label '2'. Thus all the 6m+1 edges are labeled. Hence the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total 3 sum cordial. **Illustration 3:** Total 3 Sum Cordial labeling for the graphs **EDG** (A_5^2) and **EDG** (A_6^2) Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A # 3.2 E₃-CORDIAL LABELING In this section, we present an algorithm and prove the existence of E_3 cordial labeling for the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$. # Algorithm: 3.2 Procedure [E_3 Cordial labeling for EDG (A_m^2), $m \ge 2$] $$\begin{aligned} \mathbf{V} &\leftarrow \{\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{2m}, \mathbf{v}_{2m+1}, \mathbf{v'}_{1}, \mathbf{v'}_{2}, \dots, \mathbf{v'}_{2m}, \mathbf{v'}_{2m+1}\} \\ \mathbf{E} &\leftarrow \{\mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{3m}, \mathbf{e}_{3m+1}, \mathbf{e}'_{1}, \mathbf{e}'_{2}, \dots, \mathbf{e}'_{3m}\} \\ &\qquad \mathbf{e}_{2} &\leftarrow \mathbf{0}, \mathbf{e'}_{1} \leftarrow \mathbf{2}, \mathbf{e'}_{2} \leftarrow \mathbf{0}, \mathbf{e'}_{3} \leftarrow \mathbf{2} \\ & \textit{for } i = \mathbf{0} \textit{ to } \left\lfloor \frac{m-2}{3} \right\rfloor \end{aligned}$$ $$e_{5+9i} \leftarrow 2$$ $$e_{6+9i} \leftarrow 1$$ $$e_{1+9i} \leftarrow 1$$ $$e_{3+9i} \leftarrow 1$$ $$e_{A+9i} \leftarrow 0$$ end for for $$i = 0$$ to $\left\lfloor \frac{m-3}{3} \right\rfloor$ $$e_{9+9i} \leftarrow 2$$ $$e_{7+9i} \leftarrow 1$$ $$e_{8+9i} \leftarrow 0$$ end for for $$i = 0$$ to $\left\lfloor \frac{m-4}{3} \right\rfloor$ $$e_{11+9i} \leftarrow 0$$ end for for $$i = 0$$ to $\left| \frac{m-2}{3} \right|$ Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A $$e'_{6+9i} \leftarrow 2$$ $$end \ for$$ $$for \ i = 0 \ to \left\lfloor \frac{m-2}{3} \right\rfloor$$ $$for \ j = 0 \ to \ 1$$ $$e'_{4+9i+j} \leftarrow 1$$ $$end \ for$$ $$end \ for$$ $$for \ i = 0 \ to \left\lfloor \frac{m-3}{3} \right\rfloor$$ $$e'_{9+9i} \leftarrow 2$$ $$e'_{7+9i} \leftarrow 2$$ $$e'_{8+9i} \leftarrow 0$$ $$end \ for$$ $$for \ i = 0 \ to \left\lfloor \frac{m-4}{3} \right\rfloor$$ $$e'_{12+9i} \leftarrow 2$$ $$e'_{11+9i} \leftarrow 0$$ $$end \ for$$ $$for \ j = 0 \ to \ 1$$ $$e'_{10+9i+j} \leftarrow 1$$ $$end \ for$$ $$end \ for$$ end procedure **Theorem 3.2:** The extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is E_3 coordial. **Proof:** Let A_m^2 , $m \ge 2$ be a arrow graph. In order to label the edges, define a function $f: E \rightarrow \{0,1,2\}$ as given in algorithm 3.2 The edges e₂,e'₁,e'₂ and e'₃ receive label '0', '2', '0' and '2' respectively; Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the edges e_{5+9i} receive label '2'; the edges e_{6+9i} receive label '1'; the edges e_{3+9i} receive label '1'; the edges e_{3+9i} receive label '1'; the edges e_{4+9i} receive label '0'; the edges e_{6+9i} receive label '2'; for $0 \le i \le \lfloor (m-3)/3 \rfloor$, the edges e_{9+9i} receive label '2'; the edges e_{7+9i} receive label '1'; the edges e_{8+9i} receive label '0'; the edges e_{7+9i} receive label '2'; the edges e_{8+9i} receive label '0'; the edges e_{9+9i} receive label '2'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the edges e_{11+9i} receive label '0'; the edges e'_{11+9i} receive label '0'; for $0 \le i \le \lfloor (m-2)/3 \rfloor$ the edges e'_{12+9i} receive label '2'; for $0 \le i \le \lfloor (m-2)/3 \rfloor$ and $0 \le j \le 1$, the edges e'_{4+9i+j} receive label '0'; for $0 \le i \le |(m-4)/3|$ and $0 \le j \le 1$, the edges $e'_{10+9i+j}$ receive label '0' Thus all the 6m+1 edges are labeled. To obtain the labels for vertices, we define the induced function $f^*: V \to Z_3$ defined by $f^*(v_i) = \{\sum f(v_i, v_i)/v_i v_i \in E\} \pmod{3}$ The vertices v_1 , v_2 , v_3 , v'_1 , v'_2 and v'_3 receive label '1', '0', '1', '2', '1' and '2' respectively; for $0 \le i \le |(m-2)/3|$ and $0 \le j \le 1$, the vertices v_{4+6i+1} receive label '0'; for $0 \le i \le |(m-3)/3|$ and $0 \le j \le 1$, the vertices v_{6+6i+j} receive label '2'; for $0 \le i \le |(m-4)/3|$ and $0 \le j \le 1$, the vertices v_{8+6i+j} receive label '1'; for $0 \le i \le \lfloor (m-2)/3 \rfloor$, the vertices v'_{4+6i} receive label '1', the vertices v'_{5+6i} receive label '0': for $0 \le i \le \lfloor (m-3)/3 \rfloor$, the vertices v'_{6+6i} receive label '0', the vertices v'_{7+6i} receive label '2'; for $0 \le i \le \lfloor (m-4)/3 \rfloor$, the vertices v'_{8+6i} receive label '1', the vertices v'_{9+6i} receive label '0'. Thus all the entire 4m+2 vertices are labeled. Hence the extended duplicate graph of arrow graph $\,A_m^2$, $\,m\geq 2\,$ is $E_3\,$ cordial. Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A # **Illustration 4:** E₃ Cordial labeling for the graphs **EDG**(A_5^2) and **EDG**(A_6^2) # Theorem 3.3 The extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total E_3 cordial. #### **Proof:** In theorem 3.2, **Case (i)** for $m = 3n - 4, n \ge 2$ $m + \frac{m+1}{3}$ vertices were assigned the label "1", $m + \frac{m+1}{3}$ vertices were assigned the label "0" and $m + \frac{m+1}{3} + 1$ vertices were assigned the label "2". 2m+1 edges were assigned the label "1", 2m edges were assigned the label "0" and 2m edges were assigned the label "2". **Case (ii)** for $m = 3n - 3, n \ge 2$ Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A $m + \frac{m}{3} + 1$ vertices were assigned the label "1", $m + \frac{m}{3} + 1$ vertices were assigned the label "0" and $m + \frac{m}{3}$ vertices were assigned the label "2". 2m edges were assigned the label "1", 2m edges were assigned the label "0" and 2m+1 edges were assigned the label "2". **Case (iii)** for $m = 3n - 2, n \ge 2$ $m + \frac{m+2}{3}$ vertices were assigned the label "1", $m + \frac{m+2}{3}$ vertices were assigned the label "0" and $m + \frac{m+2}{3}$ vertices were assigned the label "2". 2m edges were assigned the label "1", 2m+1 edges were assigned the label "0" and 2m edges were assigned the label "2". In case (i), the number of vertices and edges labeled "1" is $m + \frac{m+1}{3} + 2m + 1$ $$=\frac{10m+1}{3}+1$$, the number of vertices and edges labeled "0" is $m+\frac{m+1}{3}+2m=\frac{10m+1}{3}$ and the number of vertices and edges labeled "1" is $m + \frac{m+1}{3} + 1 + 2m = \frac{10m+1}{3} + 1$, which differ by at most one. In case (ii), the number of vertices and edges labeled "1" is $m + \frac{m}{3} + 1 + 2m = \frac{10m}{3} + 1$, the number of vertices and edges labeled "0" is $m + \frac{m}{3} + 1 + 1$ $2m = \frac{10m}{3} + 1$ and the number of vertices and edges labeled "1" is $m + \frac{m}{3} + 2m + 1$ $$=\frac{10m}{3}+1$$, which differ by at most one. In case (iii), the number of vertices and edges labeled "1" is $m + \frac{m+2}{3} + 2m$ $$=\frac{10m+2}{3}$$, the number of vertices and edges labeled "0" is $m+\frac{m+2}{3}+2m+1$ $$=\frac{10m+2}{3}+1$$ and the number of vertices and edges labeled "1" is $m+\frac{m+2}{3}+2m$ Vol. 7Issue 8, August 2018 ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A $=\frac{10m+2}{3}$, which differ by at most one and satisfies the required condition. Hence the extended duplicate graph of arrow graph A_m^2 , $m \ge 2$ is total E_3 cordial labeling. #### 4. Conclusion In this paper, we presented algorithms and proved that the extended duplicate graph of arrow graph A_m^2 , $m \geq 2$ admits total 3-sum cordial , E_3 - cordial and total E_3 - cordial labeling . #### References - 1. Cahit I and Yilmaz R., E₃ Cordial labeling, ArsCombinatoria, 54(2000), 119-127 - 2. E.Sampath kumar, "On duplicate graphs", Journal of the Indian Math. Soc. 37 (1973), 285 293. - 3. Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of combinatories, 19, # DS6 (2015). - 4. Harary, Graph Theory, Narosa puplising House-(2001). - 5. Pethanachi Selvam.S and Lathamaheswari.G, Total 3-sum cordial labeling, IJMA-5(5),March 2014. - 6. Rosa A, On certain Valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breech, N.Y. and Dunod paris, 1967.pp. 349- 355. - 7. S.W,Golomb,How to number a graph. In: Graph theory and computing(R.C.Read.Ed.)Acadamic press.Newyork,(1972),23-37. - 8. Thirusangu,K, Selvam B.and Ulaganathan P.P, Cordial labelings in extended duplicate twig graphs, International Journal of computer, mathematical sciences and applications, Vol.4, Nos 3-4, (2010), pp.319-328. - 9. V.J.Kaneria, M.M.Jariya and H.M.Makadia, Gracefulness of arrow graphs and double arrow graphs ,Malaya Journal of Mat. 3(4) (2015) pp. 382-386.